
Proteomics Clin. Appl. 2015, 9, 715–731 715DOI 10.1002/prca.201400178

RESEARCH ARTICLE

Development and evaluation of a multiplexed mass

spectrometry based assay for measuring candidate

peptide biomarkers in Alzheimer’s Disease

Neuroimaging Initiative (ADNI) CSF
Daniel S. Spellman1, Kristin R. Wildsmith2, Lee A. Honigberg2, Marianne Tuefferd3,
David Baker4, Nandini Raghavan4, Angus C. Nairn5, Pascal Croteau6, Michael Schirm6,
Rene Allard6, Julie Lamontagne6, Daniel Chelsky6, Steven Hoffmann7, William Z. Potter8,
Alzheimer’s Disease Neuroimaging Initiative9 and the Foundation for NIH (FNIH) Biomarkers
Consortium CSF Proteomics Project Team

1 Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories,
Pennsylvania, PA, USA

2 Department of Pharmacodynamic Biomarkers within Development Sciences, Genentech, Inc (a member of the
Roche Group), South San Francisco, CA, USA

3 Discovery Sciences, Janssen Research & Development LLC, Pharmaceutical Companies of Johnson & Johnson,
Beerse, Belgium

4 Janssen Research & Development LLC, Titusville, NJ, USA
5 Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
6 Caprion Pharmaceuticals, Montreal, QC, Canada
7 Foundation for the National Institutes of Health, Inc, Bethesda, MD, USA
8 National Institute of Mental Health, Bethesda, MD, USA
9 A complete listing of ADNI investigators can be found at

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Received: November 11, 2014
Revised: December 19, 2014
Accepted: February 5, 2015

Purpose: We describe the outcome of the Biomarkers Consortium CSF Proteomics Project
(where CSF is cerebral spinal fluid), a public–private partnership of government, academia,
nonprofit, and industry. The goal of this study was to evaluate a multiplexed MS-based approach
for the qualification of candidate Alzheimer’s disease (AD) biomarkers using CSF samples from
the AD Neuroimaging Initiative.
Experimental design: Reproducibility of sample processing, analytic variability, and ability to
detect a variety of analytes of interest were thoroughly investigated. Multiple approaches to
statistical analyses assessed whether panel analytes were associated with baseline pathology
(mild cognitive impairment (MCI), AD) versus healthy controls or associated with progression
for MCI patients, and included (i) univariate association analyses, (ii) univariate prediction
models, (iii) exploratory multivariate analyses, and (iv) supervised multivariate analysis.
Results: A robust targeted MS-based approach for the qualification of candidate AD biomarkers
was developed. The results identified several peptides with potential diagnostic or predictive
utility, with the most significant differences observed for the following peptides for differen-
tiating (including peptides from hemoglobin A, hemoglobin B, and superoxide dismutase) or
predicting (including peptides from neuronal pentraxin-2, neurosecretory protein VGF (VGF),
and secretogranin-2) progression versus nonprogression from MCI to AD.
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Conclusions and clinical relevance: These data provide potential insights into the biology of
CSF in AD and MCI progression and provide a novel tool for AD researchers and clinicians
working to improve diagnostic accuracy, evaluation of treatment efficacy, and early diagnosis.
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1 Introduction

Alzheimer’s disease (AD) is the most common cause of de-
mentia in the elderly and affects greater than 10 million peo-
ple in the United States of America and Europe (Alzheimer’s
Association, www.alz.org). AD is a progressive and fatal neu-
rodegenerative disorder that leads to memory loss and dimin-
ished cognitive function. The personal and financial costs of
AD disease are substantial. Patients ultimately lose indepen-
dence requiring full-time care; the emotional and physical toll
on the individual suffering the disease and their families are
well documented [1,2]. The system cost for care of AD patients
in 2011 in the United States alone was over US$183 billion,
with projected annual costs increasing to US$1 trillion by the
year 2050 unless effective disease-modifying treatments are
developed [3, 4].

Definitive diagnosis of AD is histological and requires
post-mortem identification of the presence of two hallmark
brain lesions; extracellular deposits of the �-amyloid (A�)
peptide (amyloid plaques) and intraneuronal accumulations
of hyperphosphorylated tau protein (neurofibrillary tangles).
Diagnosis of AD during life is based on guidelines estab-
lished by the National Institute of Neurological Disorders
and Stroke-AD and Related Disorders Association (NINCDS-
ADRDA) and a patient is considered to have “dementia of
the Alzheimer type” [5]. Despite these established guidelines,
and experienced clinicians at specialized AD Centers, the ac-
curacy of clinical AD diagnostic methods is still quite low
(comprehensively reviewed by Beach et al. [6]). These chal-
lenges are greatest in the early stages of the disease (i.e., mild
cognitive impairment (MCI)) where therapeutic intervention
may have the best chance of being effective but, behaviorally,
symptoms are often limited [7, 8].

Extensive effort within the biomedical research commu-
nity is currently focused on the discovery and development
of biomarkers of AD. Most of these efforts focus on clinically
assessable and biologically relevant biofluids (i.e., blood and
cerebral spinal fluid (CSF)) as well as the use of imaging-
based technologies. To date, three CSF-based biomarkers of
AD have been established with substantial international ac-
ceptance: decreases in A�42 and increases in total tau and
phosphorylated tau181 (p-tau181, where p-tau is hyperphos-
phorylated tau) [9–17]. CSF tau and p-tau181 have been shown
to predict progression from MCI to AD in some, in partic-
ular in combination with apolipoprotein E (ApoE) genotype,
but not all studies [18–20]. In addition, the ratio of tau(s) to

A�42 has been shown by several groups to be highly pre-
dictive of cognitive decline in cognitively normal cohorts as
well as individuals with MCI [20–24]. However, given the
wide variations in accuracy for established CSF biomarkers
across studies, the need for the identification of additional
biomarkers that will, either on their own or in combination
with more established markers, increase diagnostic accuracy
remains a critical need [25]. Thus, additional biomarkers with
diagnostic and prognostic value are also needed for AD drug
development, especially in the context of clinical trials aiming
to treat patients before the onset of dementia, and will enable
more efficient trial designs and facilitate better understanding
of mechanism of drug action. Novel biomarkers could also
help to better define the pathophysiological stages of AD, to
identify additional processes involved in AD pathogenesis, to
identify individuals at risk of rapid disease progression, and
to understand the underlying biology.

While there are several approaches and technologies cur-
rently being employed to interrogate large numbers of pro-
teins such as multiplexed immunoassays[26], protein ar-
rays[27], and aptamer arrays [28] to name a few, MS has
emerged as the most widely adopted technology platform for
proteomics in biomedical research. Discovery proteomics ex-
periments (specifically clinical proteomics) typically involve
the characterization of proteomes of normal or diseased tis-
sues or biological fluids (reviewed in [29, 30]). These ap-
proaches most commonly involve relative quantitation of pep-
tides, proteins, or PTM differences that associate or correlate
with disease state and/or progression. Discovery MS plat-
forms, typically employed for hypothesis generation, have
the capability to confidently identify thousands of proteins in
complex biological samples in an unbiased fashion (without
prespecification of the analytes to be measured). However,
broad and unbiased profiling comes at the cost of reduced
sensitivity and stochastic sampling. To move along the trans-
lational path for biomarkers to verification and hypothesis
testing, more sensitive quantitative protein measurements
must be made more precisely and reliably. Targeted MS plat-
forms provide an ideal tool for such activities by focusing
the resources of the mass spectrometer on a defined subset
of analytes [29]. Over the last few decades, targeted MS ap-
proaches have been used to increase the speed, sensitivity,
and quantitative precision of biomolecule analysis [29,31,32].

Mass spectrometers employing modern triple quadrupole
mass analyzers (known as triple quads or QQQ) enable rapid
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Clinical Relevance

Effective treatment and diagnosis of Alzheimer’s dis-
ease (AD) is a significant unmet medical need. The
number of patients suffering from this most common
form of dementia is expected to rise exponentially in
the coming years as we continue to live longer lives
in the developed world. Diagnosis of AD is confirmed
at the time of autopsy based upon the presence of
the pathological hallmarks of disease, extracellular
plaques composed primarily of amyloid beta (A�),
and intracellular tangles, composed primarily of tau
and hyperphosphorylated tau. Levels of A�, tau, and
hyperphosphorylated tau have been shown to have
diagnostic value when measured in cerebrospinal
fluid (CSF). Positron emission tomography imaging
techniques using tracers that bind A� are also prov-

ing to be of use. However, large gaps remain and
additional predictive, prognostic, and pharmacody-
namic biomarkers are needed to help improve treat-
ment paradigms and accelerate drug-development
efforts. To aid in these efforts the Biomarkers Consor-
tium CSF Proteomics Project team, a public–private
partnership of government, academia, nonprofit, and
industry has developed a targeted proteomic, multi-
plexed MS-based approach for the qualification of
candidate AD biomarkers in the well-characterized
AD Neuroimaging Initiative (ADNI) cohort. The data
from this study provide important information about
the biology of CSF in health and disease, and identify
potential biomarkers for follow-up in other studies.

mass selection and fragmentation of specific precursor ions
representing analytes of interest and monitoring signals for
only a few predefined fragment ions for each analyte. In a
contemporary MRM experiment (also commonly referred to
as SRM), each fragment ion from an analyte needs to be sam-
pled for only a few milliseconds to obtain interpretable spectra
[33]. MRM allows the specific and sensitive quantification of
large numbers of peptides and proteins in biological samples
in a single run. It is the most sensitive MS-based platform [34]
and was demonstrated to be highly reproducible within and
across laboratories and instrument platforms [35, 36]. This
approach offers an ideal tool to evaluate the host of differ-
entially expressed analytes emerging from “omics” discovery
experiments that require verification and qualification using
precise, quantitative methods in larger sample numbers and
later stages of clinical validation and implementation [30,37].

We described here the work of the Biomarkers Consor-
tium Project “Use of Targeted Mass Spectrometry Proteomic
Strategies to Identify CSF-Based Biomarkers in Alzheimer’s
Disease.” The aim of the project was to determine the ability of
a panel of peptides measured with MS to discriminate among
disease states. This project is the second part of a multiphased
effort seeking to utilize samples collected by AD Neuroimag-
ing Initiative (ADNI) to qualify multiple peptides in CSF to
diagnose patients with AD and monitor disease progression.
The earlier phase of the program focused on using a multi-
plexed immuno-based assay (manuscript in preparation) to
characterize potential AD biomarkers in CSF.

2 Materials and methods

Data used in preparation of this article were obtained from the
ADNI database (adni.loni.usc.edu). As such, the investigators
within the ADNI contributed to the design and implementa-
tion of ADNI and/or provided data but did not participate in

analysis or writing of this report. Further details about ADNI
are given in the Acknowledgments section.

2.1 CSF from ADNI-1 subjects

306 ADNI-1 baseline CSF samples were used in the study,
including 16 blinded technical replicates. Thus 289 unique
ADNI-1 baseline subjects were represented: 85 healthy
control (CN) subjects, 66 AD subjects, and 134 MCI sub-
jects. The cohort demographics are described in Table 1.
Written informed consent was obtained from all participants
and the study was conducted with prior institutional ethics
approval. Further information about ADNI can be obtained
from www.adni-info.org.

2.2 CSF sample processing

CSF sample aliquots of 0.5 mL were stored at −80�C until use.
After thawing, 100 �L of each sample was depleted of high
abundance proteins using a MARS-14 immunoaffinity resin
(4.6 × 100 mm column, Agilent) on an Agilent 1200 HPLC.
The depletion gradient used is provided in Supporting Infor-
mation Table 1). Samples were run in batches of 12, 20, or 21
over 15 days, using two separate MARS-14 columns. Details
of run order and column usage are included in Supporting
Information Table 2). Three in-run QC samples (HGS-CSF,
human gold standard CSF (Bioreclamation, lot BRH631340))
were included per depletion day (beginning, middle, and
end). These QC samples were processed at the same time
and the same manner as the study samples and were
used to assess the reproducibility of the sample processing
and MS analysis. The depleted samples, containing the re-
maining lower abundance proteins, were stored at −80�C.
After all samples were depleted, the frozen samples were
lyophilized over 72 h. The lyophilized samples were digested
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Table 1. Baseline characteristics of the ADNI proteomics cohort

Controls LMCI Progressors AD

n 85 134 67 66
Age, mean (SD) 75.6 (5.6) 74.7 (7.5) 74.9 (7.3) 75 (7.6)
Gender, percentage of females 41 (48) 44 (33) 25 (37) 37 (56)
Education, mean (SD) 15.61 (2.97) 16 (2.98) 15.82 (3.03) 15.1 (2.95)
MMSE, mean (SD) 29.04 (1.01) 26.9 (1.735) 26.49 (1.73) 23.52 (1.85)
A�1-42, mean (SD) 207.8 (56.26) 161.37a) (52.9) 146a) (41.95) 141.12 (37.39)
p-tau181P, mean (SD) 24.19 (12.02) 35.06 (15.02) 38.47 (14.51) 41.95 (20.6)
APOE4 (% allele) 64 (75) 64 (48) 26 (39) 19 (29)

a) One sample failed A� measurement.

overnight with trypsin (Promega) at 1:10 protease-to-protein
ratio, based on the protein amount determined by BCA (bicin-
choninic acid assay kit, Pierce). The digested samples were
lyophilized and desalted using an Empore C18 96-well plate
(3M). Two sets of replicate MS plates were prepared for each
sample. The plates were dried by vacuum evaporation and
stored at −20�C prior to MS analysis. A flow chart provid-
ing an overview of the main steps of sample processing is
included in Supporting Information Fig. 1).

2.3 CSF multiplex MRM panel

The MRM panel consisted of 567 peptides representing 222
proteins and, for each peptide, two mass transitions were
monitored. Non-HPLC purified synthetic reference peptide
standards (unlabeled) were obtained at a cost of approxi-
mately $12 per peptide sequence, and used for method de-
velopment, verification of instrument reproducibility prior to
and after sample analysis, and as a reference standard for data
analysis. The full list of transitions, peptide sequences, and
corresponding proteins (Table 2) are listed in Supporting In-
formation Data. The 640 detectable transitions (320 peptides
from 142 proteins) are listed first, followed by the transitions
monitored for the internal standards, followed by the remain-
ing 494 transitions that were not detectable and not carried
forward in subsequent analysis.

A number of steps were performed in order to QC and
combine (or “roll-up”) transitions into a peptide quantitation
and peptides into a protein quantitation. These results are
reported in arbitrary signal intensity units on a natural log
scale. The raw data and all the intermediate steps leading up
to the final dataset are available online at adni.loni.ucla.edu
under the “Biomarkers Consortium CSF Proteomics MRM
data set” in the document “CSFMRM Consolidated Data.xlsx”
or in Supporting Information Data.

Before analyzing the study samples, a system suitability
test of the LC/MRM-MS system was performed. The recon-
stitution solution, which includes five internal standard pep-
tides (ISPs) (peptide sequences and transitions can be found
in Supporting Information Data, annotated as IS-1 through
IS-5 in the “Transitions” tab) at 100 ng/mL was injected in
replicates of five. For the system to pass the test, the CV of the

Table 2. Proteins selected for inclusion in the LC/MRM-MS panel

1433Z CMGA IFNB NELL2 SCG3
A1AT CNDP1 IGSF8 NEO1 SDCB1
A1AT CNTF IL10 NEUS SE6L1
A1BG CNTN1 IL12B NFH SHSA7
A2GL CNTN2 IL17 NFL SIAE
A2MG CO2 IL1A NFM SLIK1
A4 CO3 IL27A NGF SMOC1
AACT CO4A IL6 NICA SODC
AATM CO5 IL6RA NLGN3 SODE
AFAM CO6 ITIH1 NPTX1 SORC1
ALDOA CO8B ITIH5 NPTX2 SORC2
AMBP COCH ITM2B NPTXR SORC3
AMD CRP JAK1 NPY SPON1
APLP2 CSTN1 KAIN NRCAM SPRL1
APOA CSTN3 KCC2B NRX1A STX12
APOA1 CUTA KI67 NRX2A SV2A
APOB CYTC KLK10 NRX3A SYNJ1
APOC1 DAG1 KLK11 NSG1 SYT11
APOD DIAC KLK12 OSTP TADBP
APOE ENOG KLK3 PCD17 TAU
B2MG ENPP2 KLK6 PCMD1 TCRG1
B3GN1 EXTL2 KLK9 PCSK1 TEN3
BACE1 FABP5 KLKB1 PDIA3 TGFB1
BASP1 FABP6 KNG1 PDYN TGFB2
BDNF FABP7 KPCZ PEDF TGFB3
BTD FABPH KPYM PGRP2 TGON2
C1QA FABPI L1CAM PIMT THRB
C1QB FAM3C LAMB2 PLDX1 TIMP1
C3AR FBLN1 LFTY2 PLMN TNF14
CA2D1 FBLN3 LPHN1 PPN TNFA
CAD13 FETUA LRC4B PRDX1 TNR1B
CADM3 FMOD LTBP2 PRDX2 TNR21
CAH1 GFAP MIME PRDX3 TNR6
CATA GLNA MMP2 PRDX4 TRBM
CATD GOGB1 MMP9 PRDX5 TRFE
CATL1 GOLM1 MMRN2 PRDX6 TRFM
CCKN GRIA4 MOG PTGDS TTHY
CCL25 HBA MTHR PTPRD UBB
CD14 HBB MUC18 PTPRN UCHL1
CD59 HEMO NBL1 PVRL1 VASN
CERU HERC4 NCAM1 RIMS3 VGF
CFAB I18BP NCAM2 SAP VTDB
CH3L1 IBP2 NCAN SCG1 X3CL1
CLUS IBP6 NEGR1 SCG2
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median peak area of the five ISP must have been below 7.5%,
and the CV of the median retention time of the five ISP must
have been below 0.25%. In addition, a synthetic peptide mix
containing all synthesized crude peptides (JPT Peptide Tech-
nologies), each at a concentration 200 pmol/mL, was injected
in replicate of five. It was required that the targeted peptides
elute within 30 s of their predicted retention times and that
the median peak area CV over all measured transitions was
below 10%.

Sample analysis was initiated after a successful system
suitability test. The processed samples were resolubilized
with 11 �L of a reconstitution solution containing five ISP
each at 100 ng/mL. In addition, one of the HGS-CSF sam-
ples from the backup plate was resolubilized with 10 �L of
the reconstitution solution plus 1 �L of the synthetic pep-
tide mix at 200 pmol/mL. This sample was used later for the
retention time alignment in Elucidator. Eight microliters of
material were injected per sample onto a NanoAcquity UPLC
(Waters) coupled to a 5500 QTRAP mass spectrometer (AB
Sciex). Peptide separation was achieved using a 320 �m ×
150 mm, 5 �m particle size, Thermo Biobasic C18 column.
Peptides were eluted with a linear LC gradient of 7.5–25%
buffer B (0.2% formic acid in ACN) over 23 min followed by
1 min at 60% buffer B and 6 min at 92.5% buffer A (0.2%
formic acid in water). The flow rate was 10 �L/min.

2.4 Data processing, normalization, and peptide

quantitation

The raw mass spectrometer data files (WIFF) were converted
to mzXML format and loaded into the Elucidator software
(version 3.3.0.1 SP4.25, Rosetta Biosciences [38]) and pro-
cessed using the “PeakTeller” processing pipeline for chro-
matogram alignment, noise filtering, data smoothing, peak
detection, and quantitation. The peak alignment was then
manually reviewed. If more than 20% of the peaks of a sam-
ple were not well aligned with the others, the sample was
excluded. The following set of five additional peptide verifica-
tion criteria were implemented to using Perl scripts developed
in house and orchestrated using Elucidator’s “visual scripts”
plug-in interface:

(i) Detection threshold: A transition was included if it was
observed in at least 10% of the total samples analyzed
(HGS-CSF and study samples) with a peak area of 7500
or more.

(ii) Wrong intensity ratio: The expected intensity ratios of the
two transitions for each peptide were calculated from
ten injections of synthetic peptide standards spiked in
buffer (ratio of peak areas summed across ten samples).
The observed transition intensity ratio was then calcu-
lated across all CSF samples having peak areas >10 000
on both transitions. For each peptide, the distribution of
the observed ratios was considered and the 25th, 50th,
and 75th percentiles of the distribution were extracted.
If the expected ratio was not contained within the 25th
and 75th percentiles and was not within 1.5-fold of the

median ratio, then the peptide was flagged (across all
samples) because of suspected matrix interference. In-
terference was then manually confirmed by visual in-
spection of chromatograms.

(iii) Low intensity correlation of transition pair: A peptide was
flagged if the squared Pearson correlation coefficient of
the transition pair was lower than 0.25.

(iv) Imperfect coelution: A peptide was flagged if the retention
time difference of the centroid of the two transitions was
greater than 0.05 min (3 s).

(v) Departure from expected RT: A peptide was flagged if the
retention time of the pair of transitions was significantly
offset (more than 10 s) compared to its expected reten-
tion time.

Peptides with one or more flags were manually reviewed
and were either kept or discarded, depending on the overall
peak shape, the quality of the alignment, and the presence
of a neighboring interference. Once the final set of transi-
tions was validated, the peak area data were then exported
to a tab-delimited file for further processing (Supporting In-
formation Data reported in the spreadsheet “Raw Intensity”).
All intensity values were transformed on the natural log scale,
in order to bring their distribution closer to a Gaussian one.
To account for the zero values, the exact transformation is
ln(intensity + 1) and is referred to as log intensity. This
transformation was used for all following steps, except when
mentioned otherwise. A two-step normalization procedure
was applied to the raw peak area data (final normalized data
is available in Supporting Information Data and is reported
in the spreadsheet “Normalized Intensity”). A detailed de-
scription of the normalization procedure in provided in the
Supporting Information Methods and Supporting Informa-
tion Fig. 4 (and can be found online at adni.loni.ucla.edu. un-
der the “Biomarkers Consortium CSF Proteomics MRM data
set” in the “Data Primer” document). The intensities for the
validated transitions as described above were used to project
“rolled-up” peptide and protein values as the score of the
first principal component (PCA), which optimally captures
the covariation in the data due to concentration differences
between the samples (described in detail in the Supporting
Information Methods)

A mix of synthetic standard peptides in buffer, each at
200 pmol/mL, was analyzed before (n = 5) and after (n = 5)
the study samples to assess instrument reproducibility and
sensitivity. The non-normalized transition intensity values for
these ten replicates are included in Supporting Information
Data in the spreadsheet “External Standards.” At the transi-
tion level, an estimate of protein concentration in the study
samples can be calculated as follows:

Protein concentration in nanograms per milliliter
= ((Transition intensity in study sample × inj. volume
× synthetic peptide conc. × MW protein)
/(average transition intensity in peptide mix × 1000 × CSF
volume injected))
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These estimates are included in Supporting Information
Data in the spreadsheet “Estimated Concentrations.” Because
the transition intensities from the standard mixes were not
included in the roll up into peptide and protein intensities,
no concentration estimates at the peptide or protein level
were calculated. The reported protein concentrations at the
transition level are considered as an illustrative estimate and
have not been demonstrated to be accurate or precise. Subse-
quent studies using heavy isotope labeled ISPs are required
to generate robust concentration measurements.

2.5 Unblinded statistical analysis

Analyses were conducted following data processing as de-
scribed above, and the quality control process described be-
low in detail, after the dataset was made publically available
(Posted April 9, 2014 on adni.loni.ucla.edu) and unblinded.
Data analysis was performed at the peptide level from the
final peptide quantitation data (Supporting Information Data
in the spreadsheet “CSV-Export”). The metadata used for
the unblinded analyses consisted of subject-specific covari-
ates including age, gender, diagnosis at baseline, diagnosis
at month 36 to identify progressors, APOE4 status, CSF A�,
CSF total, and p-tau. All metadata used in this analysis is
publicly available and were obtained from the ADNI database
(adni.loni.ucla.edu).

The demographic and diagnostic data were obtained from
the ADNIMERGE R-package [02.2014]. Two hundred eighty-
five samples, one sample/individual in the ADNI 1 cohort,
picked randomly from the test–retest dataset, of which 66 had
a baseline diagnosis of AD, 134 had a baseline diagnosis of
MCI, and 85 were CN. Of the 134 MCIs, 67 had progressed
to AD by the month 36 visit, and 67 had not. One sample
was discarded because of incomplete CSF data. There were
142 proteins (320 peptides) profiled including three blood
contamination markers, hemoglobin A (HBB), hemoglobin
A (HBA), and APOB.

Four sets of analyses were conducted: (i) univariate
association analyses, (ii) univariate prediction models, (iii)
exploratory multivariate analyses, and (iv) supervised multi-
variate analysis. To determine whether specific panel analytes
were associated with baseline pathology (MCI, AD) versus
CNs, univariate association analyses were conducted. Differ-
entially expressed analytes were identified comparing (i) AD
and controls, (ii) MCI and controls, and (iii) MCI converters
and MCI nonconverters, adjusting for age, gender, and
APOE4 status. The Benjamini–Hochberg false discovery rate
(FDR) was applied for multiple testing corrections. Univariate
prediction models were used to determine whether specific
panel analyte values at baseline were predictive of progression
from MCI to AD by 3 years, over and above that given by age,
gender, APOE4 status, and log(Tau/Ab142). The latter has
been established as a marker of progression [39]. Progressors
were defined as MCI subjects who had converted to AD by the
month 36 visit in the ADNI1 cohort. Within the MCI popula-

tion, the reference model (Ref-Model) applied was a logistic
regression model for MCI progressors versus MCI nonpro-
gressors, with age, gender, APOE, and log(Tau/A�1-42) as
covariates in the model. The test model (Test-Model) was the
same as the reference model, with each protein/peptide of in-
terest as an additional covariate. Additionally, unsupervised,
exploratory multivariate analysis was employed to look for
patterns of separation in the peptides and proteins, as well as
subgroups of subjects, using spectral maps based on centered
PCA [40]. The analysis dataset consisted of the demographic
and diagnostic data, as well as the protein and peptide
data.

Supervised multivariate analysis was performed to deter-
mine if a specific panel of analytes at baseline could be pre-
dictive of progression to AD within the MCI group. Panel se-
lection was based on penalized logistic regression. The idea
is to fit a logistic regression model with all peptides as predic-
tors and then keep the best contributors to the model as the
selected proteins. While L1 penalization would have provided
natural selection, L2 penalization was preferred for better pre-
dictive accuracy. Regression weights were computed for each
peptide (indexed by l) as (�2

l /
∑

i �2
i ), where the βs are the re-

gression coefficient of the peptides. Predictive accuracy was
estimated by the AUC score in a cross-validation frame. The
cross-validation frame was a fivefold stratified random split,
with stratification based on MCI status (converters, noncon-
verters), dubbed layer 1. Each fold of layer 1 was further
split into 100 random training and testing sets (proportion
of 80–20%, stratified by MCI status). This is layer 2 of the
cross-validation frame. Regression weights were estimated
in each training set of the second layer and averaged to get
the layer 1 regression weights. Final weights were the average
across all five layer 1 folds. Transitions with a weight above
3.5% were selected to be part of the regression model. AUC
was estimated by fitting the regression model, with selected
transitions, on each layer 1 training set and evaluating accu-
racy on the corresponding testing set. Reported AUC is the
average of the five AUCs.

For panels that do not need selection, as for the panels of
common peptides between univariate and multivariate anal-
yses, predictive accuracy was estimated by the AUC score in a
cross-validation frame. The cross-validation frame was a five-
fold stratified random split, with stratification based on MCI
status (converters, nonconverters). Regression models were
fit in each training set and AUC calculated on the correspond-
ing testing set. Reported AUC is the average of the five AUC.
Peptides were represented by one of their transition. Only
transitions with a detection rate (i.e., ratio of intensity above
10 000) above 50% were considered. For the eligible transi-
tions, the within-group (converters, nonconverters) variance
and average of squared lag below ln(10 001) was summed (a
log intensity over ln(10 001) contributes 0 to the average) and
the worse score between converters and nonconverters was
kept as a transition score. The transition with the lowest score
was selected as the peptide representative.
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Statistical analysis was performed using R version 3.0.1
(http://www.R-project.org/). The limma package [41], avail-
able from the Bioconductor [42] package version 2.12, was
used for the association study, a generalized linear model
was applied for the prediction study, and penalized regres-
sion was implemented using R package glmnet version 1.9-
8. The mpm package, also available from Bioconductor, was
used for the spectral map analysis. Spotfire (version 5.5.1)
was used for visualizations.

3 Results and discussion

3.1 Building a CSF multiplex MRM panel

Proteins and peptides were selected based upon their previ-
ous detection in CSF, relevance to AD, and previous results
from the rules based medicine (RBM) multiplex immunoas-
say analysis of ADNI CSF (manuscript in preparation).
CSF samples were depleted of abundant plasma proteins,
digested, and analyzed by LC-MS/MS operating in MRM
mode. In a pilot study, 25 ADNI CSF samples were analyzed
to determine which proteins could be detected in CSF using
the MRM platform, and to identify the best representative
peptides for monitoring each protein in the final MRM assay.
For each protein that had not been detected in previous
in-house LC-MS/MS analysis of CSF (unpublished data), ap-
proximately five peptides were tested and two were typically
selected for subsequent use. In the pilot study, an initial
list of candidate markers constructed from a wide ranging
search of published and unpublished AD biomarker studies
conducted in CSF, brain, and cell lines was evaluated. A total
of198/510 peptides (representing 121/267 proteins) were
detectable in ADNI CSF in this pilot. Peptides not detected
are likely present at concentrations below the LOD of the
platform. As the platform was capable of monitoring �500
peptides, for the final MRM panel, we supplemented the
detectable peptides from the pilot study with a large number
of additional peptides, not all of which were known to be
detectable in CSF. These additional peptides included a series
of peptides representing inflammatory markers and peptides
representing particular proteins of interest identified in the
RBM study. The final MRM panel consisted of 567 peptides
representing 222 proteins and, for each peptide, two mass
transitions were monitored. As described above, a number of
steps were performed in order to QC and combine (or “roll-
up”) transitions into a peptide quantitation and peptides into
a protein quantitation. These results are reported in arbitrary
signal intensity units on a natural log scale. Since alternate
splicing or posttranslational processing could result in bio-
logically significant differences in the levels of two peptides
from the same protein, we focused on the use of the “log pep-
tide intensity” for further analysis. The raw data and all the
intermediate steps leading up to the final dataset are included
in Supporting Information Data. The final results indicate
that 320 of 567 peptides in the final MRM panel were
detectable in >10% of ADNI samples and are included in

the final results file Supporting Information Data in the
spreadsheet “CSV-Export.”

3.2 Data quality control and peak detection

All data quality control and test/retest analysis was performed
before the sample ID’s were unblinded. Reproducibility and
quality of abundant protein immunodepletion carried out via
HPLC was evaluated by monitoring the CV of the mean AUC
for total protein in the flow-through fraction of the in-run
QCs per depletion day. In this study, the CV of the mean flow-
through AUC value was �2.2% per depletion day, �4.7% per
depletion column, and 4.9% across all QC CSF samples.

Before analyzing the study samples, a system suitability
test of the LC/MRM-MS system was performed. The recon-
stitution solution, which includes five ISPs at 100 ng/mL
was injected in replicates of five. The CV of the median peak
area of the five ISP in this study was 2.5%. The CV of the
median retention time of the five ISP in the current study
was 0.07%. It was verified that the targeted peptides elute
within 30 s of their predicted retention times (based on a syn-
thetic peptide mix containing all synthesized crude peptides
at 200 pmol/mL injected in replicate of five) and that the me-
dian peak area CV over all measured transitions was below
10% (4.8% in this study).

Sample analysis was initiated after a successful system
suitability test. The five ISP were used to monitor the instru-
ment’s performance during sample analysis. In the current
study, the median CV was 14.8% across all samples. The
number and percentage of detected transitions, peptides, and
proteins is reported in Supporting Information Fig. 3. The
median CV of the synthetic peptide mix in buffer was 4.9%
in the prerun samples, 5.9% in the postrun samples, and
12.1% overall. Supporting Information Table 2 lists the me-
dian CV of the ISP in the study samples and the median
CV of the ISP and all detected non-ISPs in the HGS-CSF
for each study day, each column, and for the entire analysis.
Sample ZGJ0297 was excluded because peaks shifted outside
the MRM detection window. Sample ZGJ0038 was excluded
because it aligned poorly with the other samples during the
Elucidator peak alignment. This was likely caused by the rela-
tive high amount of hemoglobin present in these two samples
(samples were pink).

A transition was considered detected if it was observed
in at least 10% of the total samples analyzed (HGS-CSF
and study samples) with a peak area of 7500 or more. A
peptide was considered detected if both of its transitions
were detected. A protein was considered detected if at least
one of its peptides was detected. Quality and reproducibil-
ity of sample processing and MS analysis was also evalu-
ated using the 45 HGS-CSF samples. The median peak area
CV over all transitions detected was �22.7%. The median
peak area CV over all transitions detected across all QC CSF
samples was 22.6%. Sixty-eight transitions, representing 39
different peptides, with CV >35% over the 45 HGS-CSF
samples were identified (see column CV(HGS) Supporting
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Information Data in the spreadsheet “Normalized Intensity”).
Supporting Information Fig. 3 displays individual transition
CV in HGS-CSF versus average intensity. The average in-
tensity and CV of individual transitions across all HGS-CSF
samples are included in the columns ln(AVE(HGS)) and
CV(HGS) in Supporting Information Data in the spread-
sheet “Normalized Intensity.” Higher CV across the HGS-
CSF samples is associated with lower signal intensity. Rather
than select an arbitrary cutoff for exclusion from the roll-up
process, all 640 detected transitions were included in the roll
up to peptide quantitation.

Prior to quantitation, we determined the proportion of
samples with a prenormalized intensity value of at least 10 000
the intensity threshold established for quantitation as com-
pared to the lower value of 7500 accepted for detection (see
column “%raw transition sample values >10 000” in Support-
ing Information Data in the spreadsheet “Normalized Inten-
sity”). The transitions with detection in fewer than 50% of
samples are listed in Supporting Information Table 3. These
transitions include peptides that were intentionally included
in the panel as markers of blood contamination, and so might
be expected to be present in a small number of samples. Thus
no filter was applied based on the number of CSF samples
in which a transition was detected because peptides that are
present in only a small number of samples may still be infor-
mative and should be available for subsequent analysis.

3.3 Outlier and pattern detection

The distributions of the number of detected transitions by
sample with a peak area greater than 0 (Supporting Informa-
tion Fig. 2a) or greater than 10 000 (Supporting Information
Fig. 2b) were examined. The distribution of the sample av-
erage intensity was also evaluated (Supporting Information
Fig. 2c). In the case of the averages, the peak areas were first
transformed on the log scale ln(peak area + 1). Two samples
with average intensity greater than three standard deviations
from their group mean were flagged as outliers (ZGJ0043
(Batch 13) and ZGJ0005 (Batch 14)) but these samples were
still included in subsequent peptide and protein quantita-
tion steps. A standard PCA was applied to the peak area data
in order to identify patterns unrelated to biological variabil-
ity (described in detail in Supporting Information Methods).
Supporting Information Fig. 2d displays the sample distri-
bution based on the first two principal components of the
PCA performed on raw intensity data, using all transitions.
No samples were flagged as outliers based on this analysis.

3.4 Technical reproducibility evaluation by

test/retest analysis

Three hundred six ADNI-1 baseline CSF samples were an-
alyzed, including 16 blinded technical replicates. The 16
blinded technical replicates were distributed throughout the
MS analysis runs and used to assess assay reproducibility. As

described in more detail below, there was very high concor-
dance between these “test/retest” replicates, indicating over-
all robustness in the detection and data-processing pipeline.
Data quality was assessed using the ADNI CSF test/retest
samples using the peptide-level intensity data for all 320
peptides contained in Supporting Information Data in the
spreadsheet in the spreadsheet “log(Peptide Intensity).” Re-
producibility between each of the 16 replicate pairs was as-
sessed graphically and by computing Spearman correlation
and concordance coefficients between each pair (see Support-
ing Information Data test–retest). Overall very high repro-
ducibility of intensity was observed, with correlation between
technical replicates above 0.959 for all the 16 pairs. Most of
the peptides with larger variability had relatively lower signal
intensities.

We developed a statistic to flag less-reliable peptides. In
Step 1, the most variable peptides were empirically identified
in the test–retest dataset, based on differences in expression
level between technical duplicates. Supporting Information
Fig. 5a shows the distribution of the maximum difference in
any of the 16 pairs for each peptide, a bimodal distribution of
differences was observed. An arbitrary cutoff of 5 was then
applied, identifying 24 peptides (red dots represent technical
outliers). Column “Step 1” in Supporting Information Data
in the spreadsheet “Test-Retest Flagged Peptides” lists these
24 peptides. These peptides showed a difference of greater
than 5 on the log scale within at least one of the 16 technical
replicate pairs. The column “log(Peptide Intensity)” can be
found in Supporting Information Data in the spreadsheet
“Test-Retest Flagged Peptides” to indicate these 24 test/retest
flagged peptides. However, we noted that several of these pep-
tides were included in the panel as potential markers of blood
contamination (HBA, HBB, and APOB). If blood contamina-
tion was minimal in the 16 CSF samples represented in the
test/retest set, these peptides would be expected to have low
and noisy signal but they might still have utility in detecting
rare blood contaminated samples in the full sample set. Most
of the other flagged peptides had low signal in the test/retest
samples. Given the small number of flagged peptides and the
potential for these peptides to still be informative in a small
number of samples in full sample set, we did not exclude
the 24 flagged peptides in the final dataset, Supporting
Information Data in the spreadsheet “CSV-Export.”

To further understand the relationship of test/retest per-
formance to signal intensity, we explored various metrics on
the test–retest dataset to identify outliers. The metrics and
corresponding rules are summarized in Supporting Infor-
mation Fig. 5b. These included the standard deviation, max-
imum, median absolute deviation, and minimum for each
peptide computed across the 32 samples in the test–retest
dataset. These statistics are shown plotted against the mean
in Supporting Information Fig. 5b. Of the four statistics, the
minimum appeared to be the most consistent in identify-
ing the same peptides identified in Supporting Information
Fig. 5a. We use a threshold of 0 for the minimum log(roll
up) value in at least one of the 32 samples to flag peptides.
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Nineteen peptides were identified and, of these, 17 were
among the 24 peptides flagged as technical outliers in Step
1 and two additional peptides seen as black dots below the
red line in Supporting Information Fig. 5b. Column “Step 2”
shows the peptides identified. In a final step to explore these
relationships, we applied this rule of identifying all nega-
tive log(roll up) values to the entire dataset of 304 samples.
Supporting Information Fig. 5c shows the minimum versus
mean plot for the complete dataset. This rule applied to the
entire dataset identified 27 peptides, including 19 of the 24
technical outliers as defined in Step 1. All peptides identified
in this step are reported in column “Step 3.”

In summary, the test–retest dataset allowed us to estimate
the technical reproducibility of the MRM technology on the
ADNI CSF dataset. All 16 pairs (technical replicates) showed
a comparable and very high correlation and concordance. The
most variable peptides were associated with low expression
in both the test–retest dataset (32 samples) and the entire
dataset (304 samples). Defining a threshold of a minimum
log(roll up) value in any of the samples below zero allows us
to capture 79% of the technically variable peptides flagged
in the test/retest evaluation. However, given that a number
of the peptides that were flagged using these metrics were
in fact specifically included in the panel as blood contami-
nation markers and might have utility in a small subset of
samples, all 320 peptides in Supporting Information Data
in the spreadsheet “log(Peptide Intensity)” were accepted as
“QC Pass” in the test/retest analysis and subsequently in-
cluded in the CSV export. Flagging information is included
for informational purposes.

3.5 Unblinded data analysis

Upon completion of data processing and quality control anal-
ysis, the dataset was made publically available (posted April 9,
2014 on adni.loni.ucla.edu) and unblinded. Given the poten-
tial for differences between the levels of peptides from a sin-
gle protein and the unknown biological relevance of any such
differences, data analysis was performed at the peptide level
from the final peptide quantitation data (Supporting Informa-
tion Data, spreadsheet “CSV-Export”). Data analysis aimed to
identify peptides that were differentially expressed relative to
diagnostic category, after controlling for covariates, as well as
peptides that differentiate between progressors and nonpro-
gressors. Four sets of analyses were conducted: (i) univariate
association analyses, (ii) univariate prediction models, (iii)
exploratory multivariate analyses, and (iv) supervised multi-
variate analysis.

The goal of the association analysis was to determine
whether specific peptides were associated with baseline
pathology (MCI, AD) versus CNs, after controlling for age,
gender, and APOE4. Table 3 shows the top-ranked peptides
and Fig. 1 shows a plot of the raw p-values for each peptide
against the log fold-change for AD versus CN, MCI versus

CN, and MCI converters versus MCI nonconverters. Each
peptide is colored by its adjusted p-value range. Interestingly,
two peptides from FABPH topped the list of peptides for
both AD versus CN and MCI versus CN (Table 3, Supporting
Information Fig. 6A), although they did not show statisti-
cal significance upon FDR correction. Peptides from HBA,
HBB, and superoxide dismutase (Table 3, Supporting Infor-
mation Fig. 6B–E) demonstrated significance for differen-
tiation between progressors and nonprogressors within the
MCI group.

The goal of the prediction models was to determine
whether specific panel analytes at baseline were predictive
of progression by 3 years, over and above that given by age,
gender, APOE4 status, and log(Tau/A�1-42). The latter has
been established as a marker of progression [39]. Table 1
shows the basic characteristics of the samples at baseline,
including summary statistics of age, gender, and baseline
MMSE, p-tau, A�1-42, and APOE4 status. Within the MCI
population, the reference model (Ref-Model) applied was a
logistic regression model for MCI progressors versus MCI
nonprogressors, with age, gender, APOE, and log(Tau/A�1-
42) as covariates in the model. The test model (Test-Model)
was the same as the reference one, with each peptide of in-
terest as an additional covariate. Figure 2 shows the plots of
the misclassification rate (x-axis) from the Test-Model versus
the p-value (y-axis) for the specific protein in the Test-Model.
This plot helps understand how useful the specific peptide
was for the prediction accuracy of the model, relative to the
reduction in misclassification rate achieved. The misclassi-
fication rate for the Ref-Model is given by the gray line at
0.36 on the x-axis. For example, peptide VLEYLNQEK from
secretogranin-2 (SCG2) achieves a reduction in misclassifi-
cation (down to 0.28 from 0.36 for the Ref-Model), and it is
evident from the p-value of 0.005 on the y-axis that this protein
is contributing significantly to the model. The most signifi-
cant peptides from this analysis (indicated by green squares in
Fig. 2) were LESLEHQLR and TESTLNALLQR from NPTX2
(where NPTX2 is neuronal pentraxin-2), THLGEALAPLSK,
AYQGVAAPFPK, and NSEPQDEGELEFQGVDPR from
VGF, and VLEYLNQEK from SCG2 (Supporting Information
Fig. 6F and G).

Unsupervised, exploratory, multivariate analysis was
conducted with the goal of identifying patterns of separation
in the peptides, as well as subgroups of subjects, using
spectral maps based on centered PCA [40]. Figure 3 shows
a spectral map of the MCI subjects in the data, with MCI
converters in orange and MCI nonconverters in gray. From
this plot, we can see an emerging separation of certain sub-
jects corresponding to elevate/suppressed values of peptides
EFTPPVQAAYQK, VNVDEVGGEALGR, and SAVTALWGK
from HBB; VGAHAGEYGAEALER, FLASVSTVLTSK, and
TYFPHFDLSHGSAQVK from HAA; and VLDALQAIK
and YSSLAEAASK from CAH1(Supporting Information
Fig. 6B–D).

A supervised multivariate analysis was performed, com-
bining peptide-level intensity data with established clinical
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Table 3. Summary of peptide level univariate association analyses

Peptide Protein logFC Average
expression

t p-Value Adj.
p-value

Top 20 peptides on the AD vs. CN comparison
SIVTLDGGK FABPH 0.386 14.666 3.096 0.002 0.694
SLGVGFATR FABPH 0.316 15.706 2.832 0.005 0.796
VEIDTK TTHY 0.248 15.603 2.514 0.013 0.891
LVEAFGGATK NPTXR −0.385 18.425 −2.504 0.013 0.891
LESLEHQLR NPTX2 −0.395 9.338 −2.303 0.022 0.891
ELDVLQGR NPTXR −0.315 21.740 −2.285 0.023 0.891
GATLALTQVTPQDER MUC18 −0.201 16.624 −2.197 0.029 0.891
GEAAGAVQELAR PCSK1 −0.330 21.425 −2.114 0.035 0.891
VPGLYYFTYHASSR C1QB −0.312 17.603 −2.113 0.036 0.891
ALAHLLEAER PCSK1 −0.351 19.072 −2.105 0.036 0.891
SVLGQLGITK A1AT 0.445 9.833 2.035 0.043 0.891
SSIIFAGGDK NEGR1 −0.229 20.941 −1.936 0.054 0.891
SDLYIGGVAK NRX1A −0.247 16.574 −1.929 0.055 0.891
FVVTDGGITR CA2D1 −0.287 20.252 −1.923 0.056 0.891
ITTQITAGAR NRX1A −0.275 16.234 −1.921 0.056 0.891
LSALTLSTVK NRX2A −0.263 19.328 −1.891 0.060 0.891
TESTLNALLQR NPTX2 −0.394 10.571 −1.882 0.061 0.891
NSDPALGLDDDPDAPAAQLAR PCSK1 −0.294 13.999 −1.870 0.063 0.891
LENLEQYSR NPTX1 −0.238 15.057 −1.857 0.064 0.891

Top 20 peptides on the MCI vs. CN comparison
SIVTLDGGK FABPH 0.315 14.666 2.622 0.009 0.998
SLGVGFATR FABPH 0.249 15.706 2.311 0.022 0.998
LSINTHPSQKPLSITVR CO3 1.926 7.393 2.074 0.039 0.998
LEQGENVFLQATDK C1QB −0.193 17.127 −1.868 0.063 0.998
VEIDTK TTHY 0.160 15.603 1.677 0.095 0.998
VPGLYYFTYHASSR C1QB −0.228 17.603 −1.598 0.111 0.998
TITLEVEPSDTIENVK UBB 0.155 22.402 1.579 0.115 0.998
WADLSGITK KAIN 0.285 17.639 1.501 0.135 0.998
LGAEVYHTLK ENOG 0.496 6.795 1.488 0.138 0.998
ESSQEQSSVVR KLK6 0.182 10.108 1.480 0.140 0.998
SVLGQLGITK A1AT 0.312 9.833 1.475 0.141 0.998
VGSALFLSHNLK KAIN 0.266 13.665 1.444 0.150 0.998
SWLAELQQWLKPGLK CD14 −0.138 20.664 −1.427 0.155 0.998
SYPEILTLK ENPP2 −0.082 22.329 −1.403 0.162 0.998
ESTLHLVLR UBB 0.173 22.771 1.396 0.164 0.998
FYYLIASETPGK KAIN 0.247 16.784 1.391 0.165 0.998
TGEVLDTK FAM3C 0.189 12.125 1.348 0.179 0.998
ATYIQNYR DIAC 0.110 15.474 1.347 0.179 0.998
ALQASALK ALDOA 0.160 19.168 1.345 0.180 0.998
IIEVEEEQEDPYLNDR FBLN1 0.142 9.947 1.343 0.180 0.998

Top 20 peptides on the progressors vs. nonprogressors comparison
VGAHAGEYGAEALER HBA 2.938 19.149 4.023 0.000 0.028
FLASVSTVLTSK HBA 2.488 15.117 3.870 0.000 0.028
VNVDEVGGEALGR HBB 2.938 17.911 3.694 0.000 0.028
SAVTALWGK HBB 3.199 20.449 3.628 0.000 0.028
TYFPHFDLSHGSAQVK HBA 2.327 16.299 3.615 0.000 0.028
VTGVVLFR SODE −0.243 25.187 −3.436 0.001 0.043
EFTPPVQAAYQK HBB 3.380 12.291 3.293 0.001 0.059
AGLAASLAGPHSIVGR SODE −0.232 15.298 −3.086 0.003 0.100
IGKPAPDFK PRDX2 0.641 12.962 3.027 0.003 0.107
GLFIIDGK PRDX2 0.656 19.629 2.944 0.004 0.124
ALQLPYR KLK10 −0.440 8.566 −2.877 0.005 0.138
ITQVTWQK PVRL1 −0.279 14.046 −2.779 0.006 0.168
IHWESASLLR CO3 −0.886 14.047 −2.696 0.008 0.197
ESDTSYVSLK CRP −0.797 15.218 −2.646 0.009 0.210
YSSLAEAASK CAH1 1.834 15.993 2.306 0.023 0.456
TESTLNALLQR NPTX2 −0.415 10.599 −2.291 0.024 0.456
NGQWTLIGR AMD −0.288 16.270 −2.275 0.025 0.456
VLDALQAIK CAH1 1.698 18.069 2.231 0.027 0.456
IILEALR SCG2 −0.241 20.846 −2.195 0.030 0.456
INENTGSVSVTR CAD13 −0.275 11.873 −2.170 0.032 0.456

logFC, log2 fold-change of peptide expression for each comparison of interest; average expression, average peptide expression for each comparison of interest; t, moderated
t statistic for each peptide and each comparison of interest; p-value, raw p-value of the moderated t statistic; adj. p-value, adjusted p-value for multiple testing (applying
Benjamini–Hochberg false discovery rate correction).
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Figure 1. Volcano plots of
peptides association analysis.
Each filled circle represents a
peptide, −log10(raw p-value)
versus log(fold change). Each
peptide is colored by its cor-
responding adjusted p-value
(after Benjamini–Hochberg FDR
correction). FDR <5% in red,
5–10% in orange, 10–25% in
purple, >25% in gray.

risk factors (APOE4 genotype, age, gender, and A�/p-tau ra-
tio), to determine if a multipeptide panel would be predic-
tive of conversion to AD within the MCI group. A selection
methodology was developed to identify peptides that served
as the best contributors to the performance of a multipeptide
panel (Table 4). Cross-validation was used to estimate the ac-
curacy of the panel. Panels were also identified with various

combinations of peptide-level intensity data, APOE4 geno-
type, and clinical data. The addition of peptide-level intensity
data to established clinical factors increases appreciably the
predictive accuracy of the model. The model APOE geno-
type + A�/p-tau + age + gender, AUC of 0.67, improved
to an AUC of 0.79 with the addition of the peptide-level
intensity data (for the peptides listed in Table 4). Some of

Figure 2. Univariate prediction
analysis of progression from
MCI to AD at 36 months. Each
square represent a protein in
the test versus reference model
comparison (protein-specific p-
value vs. misclassification rate
from the test-model). The color
scheme applied for each protein
is based on log-likelihood ratio
test significance comparing the
test-model and the reference-
model (p-value <0.01 in red,
0.01–0.05 in orange, >0.05 in
gray). The top three peptides are
labeled.
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Figure 3. Centered PCA. Two
first components of a centered
PCA (spectral map) represent-
ing the 134 baseline samples
identified in the MCI population.
In this biplot, each square rep-
resents a sample colored by its
progression status at 36 months
(in orange, progressors; in gray,
nonprogressors). The first
component explains 31% of the
variability between the samples,
whereas the second component
explains 13% of the variability
between the samples. The
peptides driving most of the
variability between samples are
represented as dots (top
eight peptide names are
represented).

the peptides selected in the multivariate analysis also showed
significant differential expression in the univariate analyses.
Table 5 shows the estimated AUC of panels involving only
those peptides common to the two approaches. It appears
from this analysis that it may be possible to achieve similar
accuracy with a more modest panel size.

3.6 Biological insights from MRM assay findings

An important goal of the analysis conducted here, in addi-
tion to the qualification of candidate biomarkers in a well-
characterized and curated clinical cohort, was to gain poten-
tial insights into the biology of CSF in AD and MCI progres-
sion. Many of the findings in this study confirm or replicate
orthogonal measures (from either immunoassay-based or al-
ternative MS-based approaches) in the ADNI cohort as well
as other AD CSF collections. Each peptide identified as sig-
nificant within our multiple approaches to data analysis and
visualization potentially represents an interesting biological
insight. Here we focus on a subset of findings that have
gained particular interest and traction in the literature in-
cluding, fatty acid binding proteins (Fabps), blood proteins
in CSF, the granin family of neurosecretory proteins, and
ApoE.

FABPH topped the list of peptides for both AD versus
CN and MCI versus CN (Table 3) in univariate analysis,
although they did not show statistical significance upon FDR

correction. It is interesting to note that elevated FABPH
(also known as Fabp3) concentrations as measured with
immunoassay-based platforms have been observed previ-
ously both in the current ADNI cohort as well as other US-
and EU-based groups of patients diagnosed with AD ([43] and
references included therein). The consistency and relative
robustness of this finding across studies, even without
the added confidence in the finding provided by the MRM
results reported here (Supporting Information Fig. 6A),
have generated the speculation that “central nervous system
dyshomeostasis” may play a role in AD [43] providing some
support for an earlier hypothesized role for altered CNS lipid
biology [44]. Fabps function as cytoplasmic shuttle molecules
that transport the long and short chain fatty acids that have
more direct biological functions in the brain such as docosa-
hexanoic and arachidonic acids (reviewed in [45]). At least ten
genes encoding Fabps have been identified [46] with three
Fabp family molecules, Fabp3, Fabp5, and Fabp7 localized in
neural stem/progenitor cells, neurons, and/or glia. It is spec-
ulated (reviewed by [45]) that one or more of the three Fabps
in the brain may be involved in hippocampal neurogenesis
with any defect in their function contributing to hippocampal
loss in AD. Indeed, Fabp3 concentration at baseline had been
found to be associated with the subsequent rate of decline of
entorhinal cortex size, which is correlated with hippocampal
loss [43]. The correlation between Fabp3 concentrations
reported here and the subsequent hippocampal rate of
decline in each individual remains to be explored. The
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Table 4. Peptides selected for panel to classify converters from
MCI to AD

Peptide Protein

ALQASALK ALDOA
SVSLPSLDPASAK APOB
VLNQELR APOD
INENTGSVSVTR CAD13
VSEADSSNADWVTK CFAB
SFTLASSETGVGAPISGPGIPGR CH3L1
VTIDSSYDIAK CH3L1
ILGQQVPYATK CH3L1
VIASNILGTGEPSGPSSK CNTN2
IHWESASLLR CO3
ESDTSYVSLK CRP
SIVTLDGGK FABPH
SLGVGFATR FABPH
YLPFVPSR FMOD
ESSQEQSSVVR KLK6
TESTLNALLQR NPTX2
ELDVLQGR NPTXR
AIPVAQDLNAPSDWDSR OSTP
SSFVAPLEK PEDF
DISLSDYK PRDX1
LVQAFQFTDK PRDX1
GLFIIDGK PRDX2
IGKPAPDFK PRDX2
LSILYPATTGR PRDX6
ITQVTWQK PVRL1
GEAGAPGEEDIQGPTK SCG1
AYQGVAAPFPK VGF
THLGEALAPLSK VGF
NSEPQDEGELFQGVDPR VGF

Table 5. Estimated AUC of multivariate panels restricted to top
univariate analytes

Panel AUC

INENTGSVSVTR (CAD13), IHWESASLLR (CO3),
ESDTSYVSLK (CRP), TESTLNALLQR (NPTX2),
GLFIIDGK (PRDX2), IGKPAPDFK (PRDX2) and
ITQVTWQK (PVRL1) APOE genotype

0.74

INENTGSVSVTR (CAD13), IHWESASLLR (CO3),
ESDTSYVSLK (CRP), TESTLNALLQR (NPTX2),
GLFIIDGK (PRDX2), IGKPAPDFK (PRDX2) and
ITQVTWQK (PVRL1) APOE genotype +
A�/p-tau + age + gender

0.76

interpretation of any such relationship, however, will at a
minimum require longitudinal data on alterations of Fabp3
over time versus alterations in hippocampal volume for each
individual studied. A recently described polymorphism in
Fabp3 produces a frame-shift protein, FABP3 E132fs, which
forms cellular aggregates and is unstable when expressed
in cultured cells. Work from the same group includes the
observation that Fabp3 knockout mice show decreased
social memory and novelty seeking among the investigated
behaviors [47]. Far too little is known, however, about what
influences concentrations of CSF Fabp3 to know if changes

in its concentrations truly reflect alterations in functionally
relevant lipid homeostasis in human brain.

It has been hypothesized for some time that the blood–
brain barrier is leaky in AD, leading to entry into the brain
of blood proteins and other molecules (reviewed in [48]). In-
terestingly, our data demonstrate that changes for abundant
blood proteins HBA and HBB were only apparent in dif-
ferentiating converters from nonconverters within the MCI
patient set, and that we do not see significant differences be-
tween AD and CN or MCI and CN for these peptides (Supp
frame-shift Fig. 6B and C). If the elevated hemoglobins re-
flected increased permeability of the blood–brain barrier and
if this was a characteristic of a reasonable proportion of sub-
jects with AD we should have observed an AD versus CN
difference. During the CSF sample collection, erythrocyte
counts were measured as a surrogate for blood contamina-
tion (defined as more than 500 red blood cells/�L [49]). In our
cohort, 13 CSF samples demonstrated some blood contam-
ination, including six samples (two progressors) of the 134
samples from the MCI cohort. It is unlikely that our findings
relate to blood contamination as there was no clear correla-
tion between HBA and HBB levels and erythrocyte counts
(Supporting Information Fig. 7).

Whatever the source of the hemoglobin findings, it was
observed in both univariate analysis of the data, where
peptides from the hemoglobins are significantly associated
with the diagnosis for converters versus nonconverters
(Table 3), and unsupervised multivariate analysis where
separation of converting versus nonconverting subjects corre-
sponded to elevated values of the same peptides (Fig. 2). The
current study cannot address whether these changes are spe-
cific to HBB and HBA, or reflect general change in proteins of
blood origin in CSF, given that other abundant blood proteins
were depleted from our samples (MARS-14 immunoaffinity
resin removes albumin, haptoglobin, transferrin, IgG,
IgA, a1-antitrypsin, a2-macroglobulin, a1-acid glycoprotein,
apolipoprotein AI, apolipoprotein aII, complement C3, IgM,
transthyretin, and fibrinogen). Additional analysis, and
possibly experiments will be needed to understand whether
this reflects artifacts of the experiment or some underlying
biological phenomenon. Longitudinal CSF samples in the
MCI group may prove especially helpful in understanding
these unexpected hemoglobin peptide findings.

A growing body of evidence, with several recent pub-
lications from a number of groups, have suggested the
neurosecretory granins and other dense core protein family
members, including VGF and SCG2, in both their intact
and proteolytic forms, serve as putative markers of synaptic
loss and neuronal injury/degeneration [50–54]. Our results
demonstrate significant decreases for multiple peptides from
these two proteins between converting and nonconverting
MCI patients. These proteins are typically transported in
synaptic vesicles and in an activity-dependent fashion [55].
Decreases in CSF concentrations for these analytes may
point toward alterations in vesicle maturation and transport
during AD progression. Indeed, a reduction has been
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Figure 4. ApoE peptide levels do not differ by disease state in CSF. (A) Levels of ApoE4 peptide (LGADMEDVR) are below the LOQ (dashed
line) in noncarriers. (B) Total levels of common ApoE peptide (LGPLVEQGR) are the same independent of genotype (color by ApoE4 allele:
red, ApoE4−/−; blue, ApoE4+/−; green, ApoE4+/+; group by disease state: CN, normal; MCI, mild cognitive impairment; AD, Alzheimer’s
disease; solid black line represents the group median).

observed in VGF peptides studied in the parietal cortex of
AD patients postmortem suggesting involvement in the
physiological or pathophysiological mechanisms occurring
in patients with AD [56]. By longitudinal magnetic resonance
imaging studies in subjects who progressed to AD within
4–5 years, the parietal cortex exhibited a high rate of atrophy
that correlated with changes in clinical severity and decline
in cognition [57]. Furthermore, in the parietal cortex of
patients with AD, a significant deficit in proBDNF protein
was also found [58], whereas an overlap in VGF and trk
mRNA expression has been reported in the rat CNS [59].
Hence, it can be hypothesized that a decrease in VGF may be
correlated with a loss of neuronal products such as BDNF,
resulting in the failure of neuronal protective functions.

Due to the strong risk associated with ApoE �4 allele and
AD, multiple ApoE peptides were included in the assay. This
included an ApoE4-specific peptide (LGADMEDVR), which
was below the LOQ in ApoE4-negative patients, as expected
(Fig. 4A). There was not a significant difference between lev-
els of ApoE between normal, MCI, and AD patients in CSF,
consistent with what others have observed [60–62]. This ob-
servation was consistent for the five ApoE peptides that were
quantitated, and two of the peptides are shown in Fig. 4.
However, unlike Cruchaga et al. who observed a difference
in total ApoE levels depending on ApoE4 status (0 > 1 > 2
alleles), our results using a peptide common to all the iso-
forms indicate that there is no relationship between ApoE4
status and CSF ApoE concentration (Fig. 4B). This result is
supported by another group who used the isoform-specific

peptides for quantitation with MS [62]. The differences in the
literature are most likely due to the difference in the method
of quantitation. The observed relationship between genotype
and ApoE levels in CSF as measured by an immunoassay
could simply be due to a bias of the antibody for one isoform
over another.

4 Concluding remarks

We describe the outcome of the Biomarkers Consortium CSF
Proteomics Project, a public–private partnership of govern-
ment, academia, nonprofit, and industry. This project aimed
to begin to address the large gap that remains in the qual-
ification of candidate predictive, prognostic, and pharmaco-
dynamic biomarkers for AD. To this end, we carried out an
analysis of a large number of candidate markers on what is
widely recognized as the most well-characterized cohort of
patient samples in AD. The level of rigor applied to the data
processing and analysis, in our opinion, has rarely, if ever,
been applied to this type of dataset in the area of Biomarker
research. The data from this study provide important infor-
mation about the biology of CSF in health and disease, and
identify potential biomarkers for follow-up in other studies. In
addition, the assay constructed and described here provides
researchers with a tool from further analysis of independent
clinical cohorts. It should be mentioned that several outstand-
ing issues remain to be addressed, including but not limited
to, the need for follow-up analysis in longitudinal samples as
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many candidate markers present here may not differentiate
a baseline but could when assessing their change over time,
additional development including heavy isotope peptide stan-
dards for most promising analytes to provide absolute abun-
dance measures as opposed to relative, additional correlation
analysis of orthogonal datasets available for these samples
(i.e., correlation with RBM, BACE activity, and many other
datasets available publically through the ADNI website), ad-
ditional analysis of disease-relevant demographic data such
as racial background or body mass index, and the applica-
tion of the panel to other neurological and neurodegenera-
tive diseases such as Parkinson’s, FTD, PSP, schizophrenia,
and depression to determine the specificity of the markers
evaluated.
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